/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Security 101 — Encryption and TLS

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Security

« Tactic: Encrypt Data

« Actually two things

— During transport (network)
— At rest (databases)

CS@AU

Attack
e

Henrik Baerbak Christensen

Security Tactics
Recover

Detect Attacks Resist Attacks ~ React to

l

Attacks from Attacks

Identify

Detect Actors 2:;::: Maintain Restore
Intrusion Authenticate Audit Trail
- Detect Service ~ Actors Lock
Der?ral Authotize Computer See
Verify Message actors tnf
Integrity :c?c:z
Detect Message -imit Access
Delay Limit Exposure
Encrypt Data
Separate
Entities
Change Default
Settings

Availability

Figure 9.3. Security tactics

System Detects,
Resists, Reacts,
or Recovers

/v

AARHUS UNIVERSITET

Confidentiality

By encryption

/v Symmetric Encryption

AARHUS UNIVERSITET

* Oldest trick in the book, knowingly used by The Romans

— ‘Attack on Tuesday’ to be broadcast, but not understood by
enemy

Issue:
How to distribute the

encryption key?
The key distribution problem

decryption algarithm

Figure 1-1. Symmetric key cryptography
CS@AU Henrik Beerbak Christensen 4

AARHUS UNIVERSITET

 Enigma was a symmetric encryption

— A machine, needed a ‘start setup’ of
rotators

— A code book stating the start setup
for every day
 Was cracked because
— The got hold of a machine

— One of the watched coders used
the same setting every day

— Some messages contained the same string
— The Brits had Alan Turing © © ©

« Today? https://www.youtube.com/watch?v=RzWB5|L5RX0

/v World War II: Enigma

CS@AU Henrik Baerbak Christensen 5

Y Asymmetric

AARHUS UNIVERSITET

e User has two keys
— Public + Private

+ Public = s
_ 1s public ® j ‘ %T
. enirypiion algorithm
* Private
— Is private/secret © ?
¢ Coupled keys ovigingl

— Encryptingwithone |5 j ‘

allows decrypting with
the other

* Pretty cool — allows wonderful stuff

decryption algarithm

Figure 1-2. Public key cryptography

CS@AU Henrik Baerbak Christensen 6

Y Asymmetric

AARHUS UNIVERSITET

* Now, Alice can encrypt
the message to Bob
using Bob'’s public oo p

key... j ‘ %I

— Given that she knows oo dertim
Bob’s public key...
« And only Bob can ? i
decrypt it, using private e
key j ‘ :

decryption algarithm

— As long as he does not

I I ' -2, Public key cry l;
share his private key... Figure 1-2. Public key cryptography

CS@AU Henrik Baerbak Christensen 7

/v Example

AARHUS UNIVERSITET

« | want to transfer kr. 1.000 from my own account to my
eldest son
— And | do not want anyone else to do similar stuff!

 Thus | encrypt that message...
— Actually an API call on my bank’s REST server

« ... with my bank’s public key

« Thus no one but the bank can read that message
— Ensuring confidentiality

/v Getting Bank’s Public Key

AARHUS UNIVERSITET

« Of course, it does not help, unless | can get my bank’s
public key...
— 1) I must get Nykredit's key

— 2) I must trust that the key is actually from NyKredit
 |.e. not some attacker wanting to appear to be my bank!

« The key distribution problem again

— Important, but let us look at the protocol for exchanging the
message with my bank first...

/v

AARHUS UNIVERSITET

TLS: Transport Layer Security

VeV The Confusion

AARHUS UNIVERSITET
 TLS: Transport Layer Security
« SSL: Secure Sockets Layer

« SSL is the original (Netscape developed) protocol, but
vulnerable to attacks and deprecated, superseded by
TLS

— TLS 1.3/ August 2018

 In practice, the term ‘SSL is still in widespread use today,
but what is meant is actually TLS (or should be!)

eV The TSL Protocol

B

AARHUS UNIVERSITET
. ’ o P Certificate??? Think public key
« Client get server’s certificate o
from server y et
. pata transfay
* Client encrypt challenge

using server’'s public key
— Just a random string

« Server decrypt and
send challenge back

\n
||III\|||

to client unencrypted. —
 If they match, client knows it o

s the right server... M'm

— The only one able to dechiper... rigue 13 an overview of direct communication in st

CS@AU Henrik Baerbak Christensen 12

eV Performance

AARHUS UNIVERSITET

Public key cryptography has a significant drawback, though: it is intolerably slow for large messages. [Symmetric key cryptography can usually
be done quickly enough to encrypt and decrypt all the network traffic a machine can manage. Public key cryptography is generally limited by
the speed of the cryptography, not the bandwidth going into the computer, particularly on server machines that need to handle multiple
connections simultaneously.

As a result, most systems that use public key cryptography, SSL included, use it as little as possible. Generally, public key encryption is used to
agree on an encryption key for a symmetric algorithm, and then all further encryption is done using the symmetric algorithm. Therefore, public
key encryption algorithms are primarily used in key exchange protocols and when non-repudiation is required.

e Thatis

— Once | have made the TLS handshake, client and server agree
on a symmetric encryption key

— Use that in further encryption of the bulk of messages...

« Still — How do | get the public key? And trust it?
— The key distribution problem

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

Certificates

Part |: Getting the public key

V4V Certificates

AARHUS UNIVERSITET
« Partl: | need to get that key

« Solution: Certificates

— Certificate = public key + organizational information (+..)
« That s, it is essentially just an object with some fields ©

— A certificate is issued by ‘'someone’, is publicly available, as it
only contains identification information and the public key.

— My client/browser fetches it as the first aspect of the TLS protocol
« ‘get the server’s certificate’

« Soitis part of the TLS protocol itself

/v

AARHUS UNIVERSITET

Certificate

« Example: Certificate for www.baerbak.com (excerpt)

Certificate

baerbak.com

cPanel, Inc. Certification Authority

COMODO RSA Certification Authority

Subject Name
0 a https://baerbak.com
Common Name

Issuer Name

Country
State/Province
Locality
Organization
Common Name

Validity

Not Before
Not After

see
certificate

Subject Alt Names

DNS Name
DNS Name
DNS Name
DNS Name
DNS Name

baerbak.com

us

TX

Houston

cPanel, Inc.

cPanel, Inc. Certification Authority

Fri, 05 Mar 2021 00:00:00 GMT
Thu, 03 Jun 2021 23:59:59 GMT

baerbak.com
cpanel.baerbak.com
cpcalendars.baerbak.com
cpcontacts.baerbak.com
mail.baerbak.com

A

Miscellaneous

Serial Number
Signature Algorithm
Version

Download

00:EB:BY,

Think Passport:
Issued to me (subject)

By a trusted party (issuer)
Expires after some time
The public key

O:6A:D5ASFE:22:80:DEFT:80:73:26:97.DF
b with RSA Encryption

S

PEM (cert) PEM (chain)

CS@AU

Henrik Baerbak Christensen

16

eV Man in the middle

AARHUS UNIVERSITET

 However, ‘man-in-the-middle’ can intercept client’s first
request and just spoof it all ®

Requeest senver key Request Server key

IE] Send :r::ﬁdc?g Send senver key

Client Attacker Server

Figure 1-4. A man-in-the-middle attack

« That is, an attacker persuades me to hit
— https://www.nyekredit.dk instead of https://nykredit.dk
— Just sends the spoof site’s certificate instead ®

 This is Part Il: How to trust the certificate?

https://www.nyekredit.dk/
https://nykredit.dk/

/v

AARHUS UNIVERSITET

Certificate Authority

Part II: Can | trust the key?

eV A matter of Trust

AARHUS UNIVERSITET

 TLS simply reuses the same process that most of us use
to gain trust in something

— If someone that | trust says, that | can trust you, then | will
« (Get someone to recommend a craftsman, before accepting offer ©)

— Certificate Authorities
« Atrusted 3" party that has validated that the certificate is ‘the real
thing’
« They say so, by digitally signing the certificate
— Eh —what is a digital signature?

/v Signatures

AARHUS UNIVERSITET

« ADigital Signature
— The digital equivalent to ‘it is really me’

« Alice needs to sign a message, stating that it is indeed
her, that has written it
— Alice computes a hash of the message (a checksum)
— Alice encrypts the hash with her secret key -> the signature
— Alice adds the signature to the message

« Bob can now

— Decrypt the hash, using Alice’ public key

— Compute the hash of the message, and compare with signature
 If same, it must be Alice who signed it

eV Hashes

AARHUS UNIVERSITET

« Hash function is an injective function
— For any given input you always get the same output
— However, given the output you can never compute the input
* Itis not a bijection, not an invertible function
— Near-impossible to find two inputs who provide the same output

Cryptographic hash functions are essentially checksum algorithms with special properties. You pass data to the hash function, and it outputs a
fixed-size checksum, often called a message digest , or simply digest for short. Passing identical data into the hash function twice will always
yield identical results. However, the result gives away no information about the data input to the function. Additionally, it should be practically
impossible to find two inputs that produce the same message digest. Generally, when we discuss such functions, we are talking about one-way
functions. That is, it should not be possible to take the output and algorithmically reconstruct the input under any circumstances. There are
certainly reversible hash functions, but we do not consider such things in the scope of this book.

CS@AU Henrik Baerbak Christensen 21

eV Back to the Certificate

AARHUS UNIVERSITET

« A certificate is actually
— (public key, organization information, issuer’s signature)

« Certificate Authority (CA)

— Atrusted 3" party that
» Does some background verification of you (like issue a passport)
* Issues the certificate and adds a digital signature

— So you can now use the CA’s public key to verify that it indeed
did issue that particular certificate

e ‘

CS@AU Henrik Beerbak Christensen 22

Y So the TLS protocol is...

AARHUS UNIVERSITET

« Client gets server’s certificate
— Certificate = (public key, organizational info, CA’'s signature)

« Client extracts the signature from certificate and...
— Decrypts it using CA’s public key to get the hash
— Computes the hash of the certificate by itself

— If they match, then the CA must have issued the certificate, and |
can trust it...

— And go on and use the public key to exchange symmetric keys
etc.
« But...

VeV But...

AARHUS UNIVERSITET
« The certificate also explicitly tells which DNS names it is
Issued for
— Subject Alt Names — SAN section
. Example: Subject Alt Names
— www.dr.dk e

DMS Mame dr.dk

 Thatis, itis only valid
for contacting URLSs that reside on DNS: *.dr.dk

— Ajava server will refuse to start if its hosting DNS is not listed in
the SAN section of the certificate

eV Who are the CA’s?

AARHUS UNIVERSITET

« Something is missing here — who do | trust?
— Some one has to be trusted in the first place! The CAs!

It comes built-in with your software.
« Example: Firefox defaults to trusting these CAs

Certificate Manager

Certificates
QUEW OCsSP responder servers to confirm the current ‘\-’a||d|ty of View Qertificates... Your Certificates Authentication Decisions People Servers Authorities
Certiﬁcates You have certificates on file that identify these certificate authorities

Security Devices...

~ AC Camerfirma S.A,
Chambers of Commerce Root - 2008 Builtin Object Token
Global Chambersign Root - 2008 Builtin Object Token
~ AC Camerfirma SA CIF AB2743287
Camerfirma Chambers of Commerce Root Builtin Object Token

Camerfirma Global Chambersign Root Builtin Object Token

Import...

CS@AU Henrik Baerbak Christensen 25

/v What about applications?

AARHUS UNIVERSITET
 Not all communication is browser based.

« Java
— Comes with a long list of trusted certificates in its trustStore

— The tool is ‘keytool’

* Here used to list all trusted certificates
— Try it. The password is public (why?): ‘changeit’ ©

:1E:EC:BO:A1:76

:61:1E:BC:17:B7:DA:B5:

2:FB:07:1D:F1:

CS@AU Henrik Baerbak Christensen 26

/v

AARHUS UNIVERSITET

Java Servers And Clients

Enabling TLS In Java

VeV Java Client Code

AARHUS UNIVERSITET
« Actually surprisingly easy:
— Just remember the ‘https://’ in the call

// The the local runnipg server

response = Unirest.get|"https://localhost:7777/hello/Mathilde”)
.asstring();
System.out.println("--= Received: " + response.getBody());

 Now our HTTP library (here Unirest) will do the TLS
handshake, ensure it is talking to the right server, and
encrypt further calls.

CS@AU Henrik Baerbak Christensen 28

VeV Java Client Code

AARHUS UNIVERSITET

« For self-signed certificates you have two options
— Disable the certificate check (!)

// The brute force way to accept any certificates...
// Unirest.config().verifySsl(false);

— EXxercise:
* |s this ‘any better than just using plain HTTP ?

CS@AU Henrik Baerbak Christensen 29

V4V Java Client Code

AARHUS UNIVERSITET
o Or... tell the JVM to trust the certificate

— Retrieve the certificate using ‘some tool’ or browser

« Or get the file from the owner (key sharing ©)
— Import it into the local machine/Java’s trustStore (using ‘keytool’)
— Or tell Java to use another local trustStore

« System Property: javax.net.ssl.trustStore

« Caveat: Now this server is the only one trusted!
— Because the trustStore does not mention the official CA’'s !

— So the better one is:

» Create a copy of ‘cacerts’, import the certificate into it, and tell Java
to use another trustStore than the default one

« Morale: Much more cumbersome that CA issued ones

/v The Server side of it...

AARHUS UNIVERSITET

« MSDO has a strong ‘server side’ focus

— A server must present its certificate upon request
« Same procedure for CA issued as well as self-signed certificates

 How to do that? g
L L - f il nata transfey
— Put certificate into a keyStore B
— Tell library to use that e
Example: SparkJava <
f/ 0fficially, use the System properties Iwmmm
String keyStoreFile = System.getProperty(”javax.net.ssl.keyStore"); ot ity

String keyStorePwd = System.getProperty(”javax.net.ssl.keyStorePassword");

Figure 1-3. An overview of direct communication in SSL

System.out.println{ " Using keystore: "+ keyStoreFile};
secure(keyStoreFile, keyStorePwd, null, null};

Second parameters are the ‘trustStore’ ones. ‘null’ = use default...

CS@AU Henrik Baerbak Christensen 31

/v

AARHUS UNIVERSITET

Getting Certificates

You do not need the CA, really

/v The two paths

AARHUS UNIVERSITET

* There are essentially two paths

— Request a CA to issue a certificate for you (production system)
* Which entails a slow process + a financial cost
— Some free services, like Let’s Encrypt

» And severely limits the DNS

— You cannot contact https://localhost: 7777 if localhost is not mentioned In
the certificate’s SAN section...

» It is about securing access, right
— Make a self-signed certificate (staging system)
* Which | can do fast and easy, and set up any SAN section
— Like ‘localhost’ and ‘152.143.23.11°

» Downside
— Clients have quite a lot of manual work to do...

https://localhost:7777/

/v Self-signed Certificates

AARHUS UNIVERSITET

* For staging environments (or if you just want encryption),
you may create your own certificates: ‘self-signed’

« In Java world, again ‘keytool’ does the trick

keytool -keystore basrbak.jks -alias henrikbasrbkak
-walidity 3600 —-genkeypair -keysize 3072 -keyalg R3R\
-ext SiN=dns:cavereg.baerbak.com,dns:malkiall.home,dns:malkia.st.lab.au.dk,dns:localhest,ip:127.0.0.1

« Here

— Create ‘baerbak.jks’ with a 3072 bit RSA key, valid for 10 years,
that will work on the given SAN DNS entries

» Cavereg.baerbak.com, malkia00.home, 127.0.0.1, ...
— Means | can test my secure server in various settings!

/v Trusting Self-signed Certs

AARHUS UNIVERSITET
 For instance In Firefox

0 Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to localhost. IF you visit this site, attackers could
try to steal information like your passwords, emails, or credit card details.

Learn more...

Go Back (Recommended) Advanced...

* Click ‘advanced...’, review the certificate, and proceed if
you feel confident

— Will add the certificate to the trust manager, so no need the
second time around

CS@AU Henrik Baerbak Christensen 35

/v Let’s Encrypt

AARHUS UNIVERSITET

 Original Plan for MSDO for SubscriptionService

— Make a self signed certificate

» Creates hell for all of you as you need to enter it into each and every
machine’s trustStore ®

* Finally gave in, and used Let’s Encrypt, a free service
— Turned out to be somewhat easier than anticipated...

— Costless certificate, but
« EXxpires after 3 months; have to get a new one and install in keyStore
« Only SAN is on that given machine
» Only guaranty is that ‘you hit the right machine’

bl To See It...
AARHUS UNIVERSITET

- Ervice

SkyCave — SubscriptionServi: X Certificate for cavereg.baerl x +

baerbak.com

General Permissions

Website Identity
Website: cavereg.baerbak.com
owner: This website does not supply ownership information.

Verified by: Let's Encrypt View Certificate
Certificate

DST Root CA X3

Subject Name

Common Name cavereg.baerbak.com

Issuer Name

Country us
Organization Let's Encrypt
Common Name R3

Validity

Not Before Mon, 09 Aug 2021 11:16:25 GMT
Not After Sun, 07 Nov 2021 11:16:23 GMT

Subject Alt Names

CS@AU Henrik Baerbak Christensen

DNS Name cavereg.baerbak.com

/v

Let’s En
AARHUS UNIVERSITET et S crypt

» Uses a tool ‘certbot’, which comes with a guide.
* Install and then Reertbot

el instructions

contribute to certbot hosting providers withhttps gt help
$ sudo certbot certonly --standalone certbot instructions
° o Wi II CO py a Ce rtificate to My HTTP website is running (_torcoitesiore) on (___tnzos)

your machine, which

8. Install your certificate

None of the above on Ubuntu 20.04

To use Certbot, you'll need...
You'll need to install your new certificate in the configuration file for your

. =
webserver. r 4 http:// S
ccomfort with the website @
command line® ady online Q
n port 80@

— That is, use the ‘keytool’ to
convert to a keyStore and tell
HTTP lib to secure() using it.

Jobs done... Again in three months time...

/v

AARHUS UNIVERSITET

Extras

Importing PEM Into TrustStore

eV 1. Browse to the site

AARHUS UNIVERSITET
 You will be warned

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to localhost. If you visit this site, attackers could
try to steal information like your passwords, emails, or credit card details.

Learn more...

Go Back (Recommended) Advanced...

e (Click ‘advanced...’

CS@AU Henrik Baerbak Christensen 40

/v

AARHUS UNIVERSITET

2. Get It

localhost:7777 uses an invalid security certificate.
The certificate is not trusted because it is self-signed.

Error code: MOZILLA_PKIX_ERROR_SELF_SIGNED_CERT

View Certificate

Go Back (Recommended)

 Click ‘view certificate’...

CS@AU Henrik Baerbak Christensen

Accept the Risk and Continue

41

Y 3. Verify and Download

AARHUS UNIVERSITET

* Verify that it is indeed ‘me’

Miscellaneous

Serial Number
Signature Algorithm
Version

Download

2311F:0F:32
SHA-256 with RSA Encryption

« And download the ‘PEM (cert)’ file

henrik-
brbak.pem

CS@AU Henrik Baerbak Christensen

42

eV 4. Trust it

AARHUS UNIVERSITET

* Now tell Java to trust that certificate by importing it into
the ‘trust store’
— You do that as super user ‘sudo’

sudo keytool -cacerts -importcert \

-file ~/Downloads/henrik-brbak.pem \|]
-alias msdo2021

— The alias is just a call name for the certificate

— Remember, the default password of the truststore is ‘changeit’

— You will be asked to confirm by typing ‘yes’

CS@AU Henrik Baerbak Christensen 43

Vav 5. Onwards

AARHUS UNIVERSITET

* Now you can make clients that just use ‘https’ calls to
websites that uses that signature.

* To remove trust, you can

— Sudo keytool —cacerts —delete —alias msdo2021

