
Microservices and DevOps

DevOps and Container Technology
Security 101 – Encryption and TLS

Henrik Bærbak Christensen

Security

• Concerned with ability to protect data and information

from unauthorized access while still providing access to

people/systems that are authorized

• Tactic: Encrypt Data

• Actually two things

– During transport (network)

– At rest (databases)

CS@AU Henrik Bærbak Christensen 2

Confidentiality

By encryption

Symmetric Encryption

• Oldest trick in the book, knowingly used by The Romans

– ‘Attack on Tuesday’ to be broadcast, but not understood by

enemy

CS@AU Henrik Bærbak Christensen 4

Issue:
How to distribute the

encryption key?
The key distribution problem

World War II: Enigma

• Enigma was a symmetric encryption

– A machine, needed a ‘start setup’ of

rotators

– A code book stating the start setup

for every day

• Was cracked because

– The got hold of a machine

– One of the watched coders used

the same setting every day

– Some messages contained the same string

– The Brits had Alan Turing ☺ ☺ ☺

• Today? https://www.youtube.com/watch?v=RzWB5jL5RX0

CS@AU Henrik Bærbak Christensen 5

Asymmetric

• User has two keys

– Public + Private

• Public

– Is public ☺

• Private

– Is private/secret ☺

• Coupled keys

– Encrypting with one

allows decrypting with

the other

• Pretty cool – allows wonderful stuff

CS@AU Henrik Bærbak Christensen 6

Asymmetric

• Now, Alice can encrypt

the message to Bob

using Bob’s public

key…

– Given that she knows

Bob’s public key…

• And only Bob can

decrypt it, using private

key

– As long as he does not

share his private key…

CS@AU Henrik Bærbak Christensen 7

Example

• I want to transfer kr. 1.000 from my own account to my

eldest son

– And I do not want anyone else to do similar stuff!

• Thus I encrypt that message…

– Actually an API call on my bank’s REST server

• … with my bank’s public key

• Thus no one but the bank can read that message

– Ensuring confidentiality

CS@AU Henrik Bærbak Christensen 8

Getting Bank’s Public Key

• Of course, it does not help, unless I can get my bank’s

public key…

– 1) I must get Nykredit’s key

– 2) I must trust that the key is actually from NyKredit

• I.e. not some attacker wanting to appear to be my bank!

• The key distribution problem again

– Important, but let us look at the protocol for exchanging the

message with my bank first…

CS@AU Henrik Bærbak Christensen 9

TLS: Transport Layer Security

The Confusion

• TLS: Transport Layer Security

• SSL: Secure Sockets Layer

• SSL is the original (Netscape developed) protocol, but

vulnerable to attacks and deprecated, superseded by

TLS

– TLS 1.3 / August 2018

• In practice, the term ‘SSL’ is still in widespread use today,

but what is meant is actually TLS (or should be!)

CS@AU Henrik Bærbak Christensen 11

The TSL Protocol

• Client get server’s certificate

from server

• Client encrypt challenge

using server’s public key

– Just a random string

• Server decrypt and

send challenge back

to client unencrypted.

• If they match, client knows it

is the right server…

– The only one able to dechiper…

CS@AU Henrik Bærbak Christensen 12

Certificate??? Think public key

Performance

• That is

– Once I have made the TLS handshake, client and server agree

on a symmetric encryption key

– Use that in further encryption of the bulk of messages…

• Still – How do I get the public key? And trust it?

– The key distribution problem

CS@AU Henrik Bærbak Christensen 13

Certificates

Part I: Getting the public key

Certificates

• Part I: I need to get that key

• Solution: Certificates

– Certificate = public key + organizational information (+..)

• That is, it is essentially just an object with some fields ☺

– A certificate is issued by ‘someone’, is publicly available, as it

only contains identification information and the public key.

– My client/browser fetches it as the first aspect of the TLS protocol

• ‘get the server’s certificate’

• So it is part of the TLS protocol itself

CS@AU Henrik Bærbak Christensen 15

Certificate

• Example: Certificate for www.baerbak.com (excerpt)

CS@AU Henrik Bærbak Christensen 16

Think Passport:
Issued to me (subject)

By a trusted party (issuer)
Expires after some time

The public key

Click to
see

certificate

Man in the middle

• However, ‘man-in-the-middle’ can intercept client’s first

request and just spoof it all 

• That is, an attacker persuades me to hit

– https://www.nyekredit.dk instead of https://nykredit.dk

– Just sends the spoof site’s certificate instead 

• This is Part II: How to trust the certificate?

CS@AU Henrik Bærbak Christensen 17

https://www.nyekredit.dk/
https://nykredit.dk/

Certificate Authority

Part II: Can I trust the key?

A matter of Trust

• TLS simply reuses the same process that most of us use

to gain trust in something

– If someone that I trust says, that I can trust you, then I will

• (Get someone to recommend a craftsman, before accepting offer ☺)

– Certificate Authorities

• A trusted 3rd party that has validated that the certificate is ‘the real

thing’

• They say so, by digitally signing the certificate

– Eh – what is a digital signature?

CS@AU Henrik Bærbak Christensen 19

Signatures

• A Digital Signature

– The digital equivalent to ‘it is really me’

• Alice needs to sign a message, stating that it is indeed

her, that has written it

– Alice computes a hash of the message (a checksum)

– Alice encrypts the hash with her secret key -> the signature

– Alice adds the signature to the message

• Bob can now

– Decrypt the hash, using Alice’ public key

– Compute the hash of the message, and compare with signature

• If same, it must be Alice who signed it

CS@AU Henrik Bærbak Christensen 20

Hashes

• Hash function is an injective function

– For any given input you always get the same output

– However, given the output you can never compute the input

• It is not a bijection, not an invertible function

– Near-impossible to find two inputs who provide the same output

CS@AU Henrik Bærbak Christensen 21

Back to the Certificate

• A certificate is actually

– (public key, organization information, issuer’s signature)

• Certificate Authority (CA)

– A trusted 3rd party that

• Does some background verification of you (like issue a passport)

• Issues the certificate and adds a digital signature

– So you can now use the CA’s public key to verify that it indeed

did issue that particular certificate

– Chain of trust:

• I trust you because the CA trusts you – and I trust the CA

CS@AU Henrik Bærbak Christensen 22

So the TLS protocol is…

• Client gets server’s certificate

– Certificate = (public key, organizational info, CA’s signature)

• Client extracts the signature from certificate and…

– Decrypts it using CA’s public key to get the hash

– Computes the hash of the certificate by itself

– If they match, then the CA must have issued the certificate, and I

can trust it…

– And go on and use the public key to exchange symmetric keys

etc.

• But…

CS@AU Henrik Bærbak Christensen 23

But…

• The certificate also explicitly tells which DNS names it is

issued for

– Subject Alt Names – SAN section

• Example:

– www.dr.dk

• That is, it is only valid

for contacting URLs that reside on DNS: *.dr.dk

– A java server will refuse to start if its hosting DNS is not listed in

the SAN section of the certificate

CS@AU Henrik Bærbak Christensen 24

Who are the CA’s?

• Something is missing here – who do I trust?

– Some one has to be trusted in the first place! The CAs!

• It comes built-in with your software.

• Example: Firefox defaults to trusting these CAs

CS@AU Henrik Bærbak Christensen 25

What about applications?

• Not all communication is browser based.

• Java

– Comes with a long list of trusted certificates in its trustStore

– The tool is ‘keytool’

• Here used to list all trusted certificates

– Try it. The password is public (why?): ‘changeit’ ☺

CS@AU Henrik Bærbak Christensen 26

Java Servers And Clients

Enabling TLS in Java

Java Client Code

• Actually surprisingly easy:

– Just remember the ‘https://’ in the call

• Now our HTTP library (here Unirest) will do the TLS

handshake, ensure it is talking to the right server, and

encrypt further calls.

CS@AU Henrik Bærbak Christensen 28

Java Client Code

• For self-signed certificates you have two options

– Disable the certificate check (!)

– Exercise:

• Is this any better than just using plain HTTP ?

CS@AU Henrik Bærbak Christensen 29

Java Client Code

• Or… tell the JVM to trust the certificate

– Retrieve the certificate using ‘some tool’ or browser

• Or get the file from the owner (key sharing ☺)

– Import it into the local machine/Java’s trustStore (using ‘keytool’)

– Or tell Java to use another local trustStore

• System Property: javax.net.ssl.trustStore

• Caveat: Now this server is the only one trusted!

– Because the trustStore does not mention the official CA’s !

– So the better one is:

• Create a copy of ‘cacerts’, import the certificate into it, and tell Java

to use another trustStore than the default one

• Morale: Much more cumbersome that CA issued ones

CS@AU Henrik Bærbak Christensen 30

The Server side of it…

• MSDO has a strong ‘server side’ focus

– A server must present its certificate upon request

• Same procedure for CA issued as well as self-signed certificates

• How to do that?

– Put certificate into a keyStore

– Tell library to use that

Example: SparkJava

CS@AU Henrik Bærbak Christensen 31

Second parameters are the ‘trustStore’ ones. ‘null’ = use default…

Getting Certificates

You do not need the CA, really

The two paths

• There are essentially two paths

– Request a CA to issue a certificate for you (production system)

• Which entails a slow process + a financial cost

– Some free services, like Let’s Encrypt

• And severely limits the DNS

– You cannot contact https://localhost:7777 if localhost is not mentioned in

the certificate’s SAN section…

» It is about securing access, right

– Make a self-signed certificate (staging system)

• Which I can do fast and easy, and set up any SAN section

– Like ‘localhost’ and ‘152.143.23.11’

• Downside

– Clients have quite a lot of manual work to do…

CS@AU Henrik Bærbak Christensen 33

https://localhost:7777/

Self-signed Certificates

• For staging environments (or if you just want encryption),

you may create your own certificates: ‘self-signed’

• In Java world, again ‘keytool’ does the trick

• Here

– Create ‘baerbak.jks’ with a 3072 bit RSA key, valid for 10 years,

that will work on the given SAN DNS entries

• Cavereg.baerbak.com, malkia00.home, 127.0.0.1, …

– Means I can test my secure server in various settings!

CS@AU Henrik Bærbak Christensen 34

Trusting Self-signed Certs

• For instance in Firefox

• Click ‘advanced…’, review the certificate, and proceed if

you feel confident

– Will add the certificate to the trust manager, so no need the

second time around

CS@AU Henrik Bærbak Christensen 35

Let’s Encrypt

• Original Plan for MSDO for SubscriptionService

– Make a self signed certificate

• Creates hell for all of you as you need to enter it into each and every

machine’s trustStore 

• Finally gave in, and used Let’s Encrypt, a free service

– Turned out to be somewhat easier than anticipated…

– Costless certificate, but

• Expires after 3 months; have to get a new one and install in keyStore

• Only SAN is on that given machine

• Only guaranty is that ‘you hit the right machine’

CS@AU Henrik Bærbak Christensen 36

To See It…

CS@AU Henrik Bærbak Christensen 37

Let’s Encrypt

• Uses a tool ‘certbot’, which comes with a guide.

• Install and then

• … will copy a certificate to

your machine, which

– That is, use the ‘keytool’ to

convert to a keyStore and tell

HTTP lib to secure() using it.

Jobs done… Again in three months time…

CS@AU Henrik Bærbak Christensen 38

Extras

Importing PEM into TrustStore

1. Browse to the site

• You will be warned

• Click ‘advanced…’

CS@AU Henrik Bærbak Christensen 40

2. Get it

• Click ‘view certificate’…

CS@AU Henrik Bærbak Christensen 41

3. Verify and Download

• Verify that it is indeed ‘me’

• And download the ‘PEM (cert)’ file

CS@AU Henrik Bærbak Christensen 42

4. Trust it

• Now tell Java to trust that certificate by importing it into

the ‘trust store’

– You do that as super user ‘sudo’

– The alias is just a call name for the certificate

– Remember, the default password of the truststore is ‘changeit’

– You will be asked to confirm by typing ‘yes’

CS@AU Henrik Bærbak Christensen 43

5. Onwards

• Now you can make clients that just use ‘https’ calls to

websites that uses that signature.

• To remove trust, you can

– Sudo keytool –cacerts –delete –alias msdo2021

CS@AU Henrik Bærbak Christensen 44

